Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

نویسندگان

  • Arun Kumar Shukla
  • Javed Alam
  • Mansour Alhoshan
  • Lawrence Arockiasamy Dass
  • M. R. Muthumareeswaran
چکیده

In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm-2h-1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of an Antifouling Polyethersulfone Nanofiltration Membrane Blended with Graphene Oxide/Ag Nanoparticles

Graphene oxide/Ag nanoparticles (Ag/GO) was prepared and employed to synthesize antifouling polyethersulfone (PES) mixed matrix membranes. The performance of the membranes was evaluated in terms of flux, hydrophilicity and anti-biofouling properties. With increment of the Ag/GO from 0 to 0.1 wt.%, the pure water flux increased from 24.7 up to 54.1 kg/m2 h. The flux recovery ratio (FRR) of the m...

متن کامل

Effect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane

   In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat ...

متن کامل

A Novel Nanofiltration Membrane Prepared with PAMAM and Graphene oxide for Desalination

Nanofiltration is increasingly gaining attention in many separation and treatment processes such as water softening, color removal and separation of medicines. Nanofiltration membranes are often negatively charged, displaying separation characteristics in the intermediate range between reverse osmosis and ultrafiltration. In this research, a novel nanofiltration membrane prepared with poly(amid...

متن کامل

Preparation of Nanocomposite Heteropoly Metalate Based Graphene Oxide: Insight into Cadmium Adsorption

We developed a facile strategy for preparation of heteropoly metalate/graphene oxide nanocomposite as a new ion exchanger for cadmium ion removal from aqueous solution. The synthesized nanocomposite was characterized by X-ray powder diffraction (XRD), UV-Vis spectroscopy, FT-IR spectroscopy and Raman spectroscopy. Our findings indicated that the combination of heteropoly metalate nanoparticles ...

متن کامل

Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate

One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017